
一、短期:GPU仍延续AI芯片的领导地位,FPGA增长较快
GPU短期将延续AI芯片的领导地位。目前GPU是市场上用于AI计算最成熟应用最广泛的通用型芯片,在算法技术和应用层次尚浅时期,GPU由于其强大的计算能力、较低的研发成本和通用性将继续占领AI芯片的主要市场份额。GPU的领军厂商英伟达仍在不断探寻GPU的技术突破,新推出的Volta架构使得GPU一定程度上克服了在深度学习推理阶段的短板,在效率要求和场景应用进一步深入之前,作为数据中心和大型计算力支撑的主力军,GPU仍具有很大的优势。
FPGA是目前增长点,FPGA的最大优势在于可编程带来的配置灵活性,在目前技术与运用都在快速更迭的时期具有巨大的实用性,而且FPGA还具有比GPU更高的功效能耗比。企业通过FPGA可以有效降低研发调试成本,提高市场响应能力,推出差异化产品。在专业芯片发展得足够重要之前,FPGA是最好的过渡产品,所以科技巨头纷纷布局云计算+FPGA的平台。随着FPGA的开发者生态逐渐丰富,适用的编程语言增加,FPGA运用会更加广泛。因此短期内,FPGA作为兼顾效率和灵活性的硬件选择仍将是热点所在。
二、长期:三大类技术路线各有优劣,会长期并存
(1)GPU主攻高级复杂算法和通用型人工智能平台
GPU未来的进化路线可能会逐渐发展为两条路,一条主攻高端复杂算法的实现,由于GPU相比FPGA和ASIC高性能计算能力较强,同时对于指令的逻辑控制上也更复杂一些,在面临需求通用型AI计算的应用方面具有较大优势。第二条路则是通型人工智能平台,GPU由于设计方面,通用性强,性能较高,应用于大型人工智能平台够高效地完成不同种类的调用需求。
(2)FPGA适用变化多的垂直细分行业
FPGA具有独一无二的灵活性优势,对于部分市场变化迅速的行业非常适用。同时,FPGA的高端器件中也可以逐渐增加DSP、ARM核等高级模块,以实现较为复杂的算法。FPGA以及新一代ACAP芯片,具备了高度的灵活性,可以根据需求定义计算架构,开发周期远远小于设计一款专用芯片,更适用于各种细分的行业。ACAP的出现,引入了AI核的优点,势必会进一步拉近与专用芯片的差距。随着 FPGA 应用生态的逐步成熟,FPGA 的优势也会逐渐为更多用户所了解。
(3)ASIC芯片是全定制芯片,长远看适用于人工智能
因为算法复杂度越强,越需要一套专用的芯片架构与其进行对应,而ASIC基于人工智能算法进行定制,其发展前景看好。ASIC是AI领域未来潜力较大的芯片,AI算法厂商有望通过算法嵌入切入该领域。ASIC具有高性能低消耗的特点,可以基于多个人工智算法进行定制,其定制化的特点使其能够针对不同环境达到最佳适应,在深度学习的训练和推理阶段皆能占据一定地位。
目前由于人工智能产业仍处在发展的初期,较高的研发成本和变幻莫测的市场使得很多企业望而却步。未来当人工智能技术、平台和终端的发展达到足够成熟度,人工智能应用的普及程使得专用芯片能够达到量产水平,此时ASIC芯片的发展将更上一层楼。此外,AI算法提供商也有望将已经优化设计好的算法直接烧录进芯片,从而实现算法IP的芯片化,这将为AI芯片的发展注入新的动力。